If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+2k-13=30
We move all terms to the left:
k^2+2k-13-(30)=0
We add all the numbers together, and all the variables
k^2+2k-43=0
a = 1; b = 2; c = -43;
Δ = b2-4ac
Δ = 22-4·1·(-43)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{11}}{2*1}=\frac{-2-4\sqrt{11}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{11}}{2*1}=\frac{-2+4\sqrt{11}}{2} $
| 5x−8=-3(x−2)+58 | | 12=n+6 | | 3/5(x+2)=x−4 | | 6=x-4+x | | 8k+7k=15 | | -17=5+6n+2 | | -13=8x+1+2 | | 2(5r+5)=10(2r-2) | | m/11+30=36 | | 8x+9=5x-21 | | 12x-24=6-3x | | 8x²+8x+201=0 | | 3+2p+4p=-9 | | 80-4x=48 | | 12d²+8d+201=0 | | 15=8b-1-8 | | 12x-5=6-3x | | 4=x+1-4 | | 2x+6=-4×-12 | | 8=2x/7x | | 10=a+4a | | -12=r-5r | | 8=2/7x | | x-0.15x=125 | | 174+10x-6=102+10x | | 45=7a+3 | | (3x+26)+2x+39=180 | | (6x+10)+(x+15)+(2x+20)=180 | | -5x+2x=-5 | | p^2+5p–14=0 | | 2x+10+8x-20=180 | | p2+5p–14=0 |